首页> 外文OA文献 >Large-scale JPEG steganalysis using hybrid deep-learning framework
【2h】

Large-scale JPEG steganalysis using hybrid deep-learning framework

机译:使用混合深度学习框架的大规模JpEG隐写分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep learning frameworks have recently achieved superior performance in manypattern recognition problems. However, adoption of deep learning in imagesteganalysis is still in its initial stage. In this paper we propose a hybriddeep-learning framework for JPEG steganalysis incorporating the domainknowledge behind rich steganalytic models. We prove that the convolution phaseand the quantization & truncation phase of the rich models are not learnable indeep convolutional neural networks. Based on theoretical analysis, our proposedframework involves two main stages. The first stage is hand-crafted,corresponding to the convolution phase and the quantization & truncation phaseof the rich models. The second stage is a compound deep neural networkcontaining three deep subnets in which the model parameters are learned in thetraining procedure. By doing so, we ably combine some merits of rich modelsinto our proposed deep-learning framework. We have conducted extensiveexperiments on a large-scale dataset extracted from ImageNet. The primarydataset used in our experiments contains 500,000 cover images, while ourlargest dataset contains five million cover images. Our experiments show thatthe proposed framework outperforms all other state-of-the-art steganalyticmodels either hand-crafted or learned using deep networks in the literature.Furthermore, we demonstrate that our framework is insensitive to JPEG blockingartifact alterations and the learned model can be easily transferred to adifferent attacking target. Both of these properties are of critical importancein practical applications. According to our best knowledge, This is the firstreport of deep learning in image steganalysis validated with large-scale testdata.
机译:深度学习框架最近在许多模式识别问题中取得了卓越的性能。但是,在图像分割分析中采用深度学习仍处于起步阶段。在本文中,我们提出了一种用于JPEG隐写分析的混合深度学习框架,该框架结合了丰富的隐写分析模型背后的领域知识。我们证明了丰富模型的卷积阶段和量化与截断阶段在深度卷积神经网络中是不可学习的。基于理论分析,我们提出的框架涉及两个主要阶段。第一阶段是手工制作的,对应于丰富模型的卷积阶段和量化与截断阶段。第二阶段是包含三个深层子网的复合深层神经网络,其中在训练过程中学习模型参数。通过这样做,我们可以将丰富模型的某些优点合理地结合到我们提议的深度学习框架中。我们对从ImageNet提取的大规模数据集进行了广泛的实验。我们的实验中使用的主要数据集包含500,000个封面图像,而我们最大的数据集包含500万个封面图像。我们的实验表明,所提出的框架优于文献中使用深层网络手工制作或学习的所有其他最先进的隐写分析模型。此外,我们证明了我们的框架对JPEG块伪像的更改不敏感,并且所学习的模型可以轻松实现转移到不同的攻击目标。这两个特性在实际应用中都至关重要。据我们所知,这是通过大规模测试数据验证的图像隐写分析中深度学习的第一份报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号